Members of the MYBMIXTA-like transcription factors may orchestrate the initiation of fiber development in cotton seeds
نویسندگان
چکیده
MYBMIXTA-like (MML) transcription factors form the subgroup 9 of R2R3MYBs (Stracke et al., 2001) whose first characterized member was MIXTA from Antirrhinum majus. Various MML genes have been shown to be important regulators of epidermal cell differentiation in different plant species, including specifying cell shape in petals, vegetative trichome initiation and branching and seed fiber initiation (Martin et al., 2002; Machado et al., 2009; Walford et al., 2011). Indeed, the conical cells of petals look very much like young fibers shortly after they protrude from the epidermal surface of the cotton seed and begin to elongate, so it is likely there is some commonality in cellular regulation between the different tissue types. In tetraploid cotton, Gossypium hirsutum L. (Gh), the silencing or over-expression of two MML genes (GhMYB25 and GhMYB25Like) expressed predominantly in the ovule epidermis during fiber initiation affect the initiation or timing of expansion of fiber initials (Machado et al., 2009; Walford et al., 2011). Based on silencing phenotypes and gene expression data, GhMYB25Like may be one of the most upstream genes in a regulatory cascade currently known to involve GhMYB25, GhMYB109 (an R2R3 MYB from subgroup 15, Pu et al., 2008) and other types of transcription factors, such as the homeodomain leucine zipper (HDzip) factor GhHD-1, that may act in a protein complex with GhMYB25 (Zhang et al., 2010; Walford et al., 2012). The recent release of the genome sequence from the diploid G. raimondii (Gr), an extant species most closely related to the D-genome progenitor of tetraploid cotton, may help draw a more complete picture about the evolution of the MML gene subgroup in cotton and their apparent expansion and recruitment to specialized functions in epidermal seed fiber development.
منابع مشابه
GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like.
Jasmonic acid (JA) signaling has been well studied in Arabidopsis. Most reports focus on the role of JA in biological pathways, such as stress resistance, trichome initiation and anthocyanin accumulation. The JASMONATE ZIM-DOMAIN (JAZ) protein is one of the important repressors in the JA signaling pathway. Previous studies showed that JA functions in fiber initiation and elongation, but little ...
متن کاملActivation of Arabidopsis Seed Hair Development by Cotton Fiber-Related Genes
Each cotton fiber is a single-celled seed trichome or hair, and over 20,000 fibers may develop semi-synchronously on each seed. The molecular basis for seed hair development is unknown but is likely to share many similarities with leaf trichome development in Arabidopsis. Leaf trichome initiation in Arabidopsis thaliana is activated by GLABROUS1 (GL1) that is negatively regulated by TRIPTYCHON ...
متن کاملSuppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development.
Cotton is the most important textile crop as a result of its long cellulose-enriched mature fibers. These single-celled hairs initiate at anthesis from the ovule epidermis. To date, genes proven to be critical for fiber development have not been identified. Here, we examined the role of the sucrose synthase gene (Sus) in cotton fiber and seed by transforming cotton with Sus suppression construc...
متن کاملComprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development
TCP proteins are plant-specific transcription factors implicated to perform a variety of physiological functions during plant growth and development. In the current study, we performed for the first time the comprehensive analysis of TCP gene family in a diploid cotton species, Gossypium arboreum, including phylogenetic analysis, chromosome location, gene duplication status, gene structure and ...
متن کاملA fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton.
Arabinogalactan proteins (AGPs) are involved in many aspects of plant development. In this study, biochemical and genetic approaches demonstrated that AGPs are abundant in developing fibers and may be involved in fiber initiation and elongation. To further investigate the role of AGPs during fiber development, a fasciclin-like arabinogalactan protein gene (GhFLA1) was identified in cotton (Goss...
متن کامل